ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Zbigniew Weiss
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 235-247
Technical Paper | doi.org/10.13182/NSE72-A22482
Articles are hosted by Taylor and Francis Online.
In one-dimensional systems which consist of N nodes, the two N response matrix equations for the partial currents through the node interfaces have been transformed into a set of N three-point equations with the total in-current per node as the new variable. The resulting coefficients which describe the coupling between neighboring nodes are expressed in terms of the reflection and transmission matrices of the invariant imbedding theory. These coupling coefficients can be compared with those of other nodal equations. In the case of slab geometry this has been illustrated by a direct comparison with the familiar finite difference formulation with the average flux per node as the dependent variable. Also the relation between the method presented here and the so-called rigorous finite difference equations has been established. The advantage of this method lies in the fact that the flexibility of the response matrix methods—which describe the nodes in terms of invariant imbedding concepts—has been condensed into the conventional three-point finite difference scheme, for which many well-established solution methods exist.