ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
K. Gul
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 103-110
Technical Paper | doi.org/10.13182/NSE02-A2248
Articles are hosted by Taylor and Francis Online.
Calculations for the excitation functions of the 58Ni(n, )55Fe reaction, including those of the ground and first states of 55Fe, 58Ni(n, p+p)54Mn, 58Ni(n,2n)57Ni, 58Ni(n,n')58Ni, and 58Ni(n,np+pn)57Co reactions were carried out using nuclear reaction model codes. The results have been compared with reported measurements and evaluations. The available data on the 58Ni(n,n')58Ni, 58Ni(n,2n)57Ni, and 58Ni(n,np+pn+d)57Co reactions are described well by using the single-particle model for the calculation of gamma-ray transition probabilities of the excited states of 58Ni.