ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. L. Mallikarjuna, S. B. Appaji Gowda, S. Krishnaveni, R. Gowda, T. K. Umesh
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 96-102
Technical Paper | doi.org/10.13182/NSE02-A2247
Articles are hosted by Taylor and Francis Online.
The total attenuation cross sections of the elements copper, zirconium, silver, and tin have been measured experimentally in a narrow beam good geometry set up by employing a high-resolution hyperpure germanium detector in the energy range 5 to 85 keV. The data have been used to derive the K-shell photoeffect cross sections at the K-edge, the oscillator strength gK, and the K-jump ratio of the elements copper, zirconium, silver, and tin. The photoeffect cross sections at the K-edge and the oscillator strengths of the element have been calculated by making use of a method that eliminates the requirement of subtracting the theoretical scattering contribution. The best-fit coefficients for the cross sections and the relations so obtained for the jump ratios and oscillator strengths facilitate a speedier E- and Z-wise interpolation of the data on total attenuation cross sections as well as JK and K-shell photo effect cross sections at the K-edge, respectively, in the range 5 to 85 keV, for elements in the atomic number range 25 to 55.