ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
T. J. Hoffman, J. C. Robinson, P. N. Stevens
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 179-188
Technical Paper | doi.org/10.13182/NSE72-A22469
Articles are hosted by Taylor and Francis Online.
An important radiation transport problem is that of determining the effect of a geometrically complex object (vehicle) located in an otherwise geometrically simple system. The direct solution to this problem often requires a Monte Carlo calculation. If the vehicle is far removed from the radiation source, the calculation can be very costly or even impossible.To deal with this problem, a new method, the adjoint difference method, has been developed. This method decomposes the original problem into two independent calculations: 1. a geometrically simple (one- or two-dimensional) deep-penetration calculation that is independent of the vehicle 2. a localized three-dimensional calculation that is independent of the radiation source. The first calculation is suitable to deterministic methods of solution, such as discrete ordinates. The second, by nature of geometry, usually requires a Monte Carlo calculation; however, this is not a deep-penetration calculation. Therefore the dual complexity of geometry and statistics inherent in a deep-penetration Monte Carlo calculation is avoided. Since the above calculations are independent, only the coupling of these calculations depends on the relative position and orientation of the source and vehicle. Hence the effects of different sources and arbitrary vehicle orientations can be obtained from a single Monte Carlo calculation. The method was examined through application to several problems. All resuits were compared to those obtained from presently acceptable methods of problem solution. In these applications, the adjoint difference method was shown to be an efficient, versatile method of calculation.