ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
D. E. Bartine, R. G. Alsmiller, Jr., F. R. Mynatt, W. W. Engle, Jr., J. Barish
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 159-178
Technical Paper | doi.org/10.13182/NSE72-A22468
Articles are hosted by Taylor and Francis Online.
The one-dimensional discrete ordinates code ANISN has been adapted to simulate the transport of low-energy (on the order of a few MeV) electrons. Two different calculational techniques have been utilized for the treatment of electron-electron collisions that result in a small energy transfer. One method treats such collisions by a continuous slowing down approximation, while the other method treats these collisions by the use of a very approximate cross section. Calculated results obtained with ANISN are compared with experimental data for the transmitted energy and angular distributions for 1-, 2.5-, 4-, and 8-MeV electrons normally incident on aluminum slabs of various thicknesses and for 1-MeV electrons normally incident on a gold slab. The calculated and experimental results are in reasonably good agreement for the aluminum slabs but are in poor agreement for the gold slab. Calculated results obtained with ANISN are also compared with calculated results obtained with Monte Carlo methods.