ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
C. K. Cheng, B. M. Ma
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 139-158
Technical Paper | doi.org/10.13182/NSE72-A22467
Articles are hosted by Taylor and Francis Online.
The time-dependent radius of the central void and the extents of the columnar grain, the equiaxed grain, and the unaffected grain regions of a typical oxide cylindrical fuel rod in a fast reactor at constant power level are determined. The temperature distributions in the fuel element are obtained. A model postulated to analyze and calculate the irradiation swelling and fission-gas release for oxide fuels of fast reactors is developed. The mechanical analysis is based on the thermal and radiation dilatations and on an elastoplastic approach for the Prandtl-Reuss material. An iteration method of successive approximation is used to compute the stresses and strains developed in the fuel elements. The computed results are shown by curves for the unsteady-state fuel restructuring of the fuel element.