ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
J. K. Dickens
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 78-86
Technical Paper | doi.org/10.13182/NSE72-A22458
Articles are hosted by Taylor and Francis Online.
Gamma-ray spectra have been obtained for reactions involving neutron interactions with a sample of natural calcium. Gamma rays were observed which are associated with the reactions 40Ca(n,n’γ)40Ca, 40(n,pγ)40K, 40Ca(n,αγ)37Ar, and 42,44Ca. Incident neutron energies wereEn= 4.85, 5.4,6.45, 7.0, 7.5, and 8.05 MeV, and the scattering angle was θγ = 125 deg. The gamma rays were detected using a 45-cm3 coaxial Ge(Li) detector placed 100 cm from the sample; time-of-flight was used with the gamma-ray detector to discriminate against pulses due to neutrons and background gamma radiation. The sample was 20 g of natural calcium metal in the form of a right circular cylinder. The incident neutron beam was produced by bombarding a deuterium-filled gas cell with the pulsed deuteron beam of appropriate energy from the ORNL 6-MV Van de Graaff. The resulting neutron beam was monitored using a scintillation counter; a time-of-flight spectrum from this detector was recorded simultaneously with the gamma-ray data. These data have been studied to obtain absolute cross sections for production of gamma rays from calcium for the incident neutron energies. More than 50 gamma rays were correlated with transitions among the residual nuclei; these assigned gamma rays have >90% of the total gamma production cross section for En ≤ 6.45 MeV. All unplaced gamma rays have small cross sections and are most likely associated with transitions in 40K. The cross sections have been compared, where possible, with previously measured values and with results of the most recent evaluation for calcium with generally good agreement. Several important differences with previous data are discussed.