ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. K. Dickens
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 78-86
Technical Paper | doi.org/10.13182/NSE72-A22458
Articles are hosted by Taylor and Francis Online.
Gamma-ray spectra have been obtained for reactions involving neutron interactions with a sample of natural calcium. Gamma rays were observed which are associated with the reactions 40Ca(n,n’γ)40Ca, 40(n,pγ)40K, 40Ca(n,αγ)37Ar, and 42,44Ca. Incident neutron energies wereEn= 4.85, 5.4,6.45, 7.0, 7.5, and 8.05 MeV, and the scattering angle was θγ = 125 deg. The gamma rays were detected using a 45-cm3 coaxial Ge(Li) detector placed 100 cm from the sample; time-of-flight was used with the gamma-ray detector to discriminate against pulses due to neutrons and background gamma radiation. The sample was 20 g of natural calcium metal in the form of a right circular cylinder. The incident neutron beam was produced by bombarding a deuterium-filled gas cell with the pulsed deuteron beam of appropriate energy from the ORNL 6-MV Van de Graaff. The resulting neutron beam was monitored using a scintillation counter; a time-of-flight spectrum from this detector was recorded simultaneously with the gamma-ray data. These data have been studied to obtain absolute cross sections for production of gamma rays from calcium for the incident neutron energies. More than 50 gamma rays were correlated with transitions among the residual nuclei; these assigned gamma rays have >90% of the total gamma production cross section for En ≤ 6.45 MeV. All unplaced gamma rays have small cross sections and are most likely associated with transitions in 40K. The cross sections have been compared, where possible, with previously measured values and with results of the most recent evaluation for calcium with generally good agreement. Several important differences with previous data are discussed.