ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 47 | Number 4 | April 1972 | Pages 449-469
Technical Paper | doi.org/10.13182/NSE72-A22436
Articles are hosted by Taylor and Francis Online.
This paper consists of a consistent codification and generalization of previous formalisms and of extensions that result in new approximation methods. The discussion is restricted to the multigroup neutron diffusion equations. The development of variational principles that admit discontinuous trial functions which need satisfy neither the final and initial conditions nor the external boundary conditions of the physical problem is reviewed and generalized. Consistent single-channel and multichannel spatial synthesis and spectral synthesis formalisms are developed. The difficulty with over determined interface conditions which has arisen in previous work is traced to a failure to properly apply continuity requirements at these interfaces so as to relate variations in the adjoint trial functions on opposite sides of the interface. A generalized nodal formalism is developed as an extension of the variational synthesis method. The use of a particular type of piecewise cubic polynomial to modulate expansion functions is introduced as a means to obtain overlapping multichannel synthesis and generalized nodal approximations which do not require the evaluation of troublesome surface integrals. A brief review of the experience to date with variational synthesis methods for the multigroup neutron diffusion equations is given.