ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. N. Bridges, J. D. Clement
Nuclear Science and Engineering | Volume 47 | Number 4 | April 1972 | Pages 421-434
Technical Paper | doi.org/10.13182/NSE72-A22434
Articles are hosted by Taylor and Francis Online.
This investigation involved a theoretical and experimental study of space-dependent reactor transfer functions with temperature feedback. The reactor transfer function under investigation was the neutron flux response to an input perturbation or source. An existing theoretical model, known as the complex source method, was extended to include temperature feedback effects and the resultant equations were programmed for a model of the Georgia Tech Research Reactor (GTRR). Spatial transfer function measurements were made in the GTRR using an in-core pile oscillator employing a pseudo-random binary sequence. Several detector locations were investigated for both zero-power and at-power (900 kW) conditions over a frequency range from 4 × 10−4 to 8.5 Hz. Data were taken and stored on magnetic tape using two PDP-8 computers and a magnetic tape unit. The theoretical calculations and the experimental results agreed quite closely. Temperature feedback effects for the GTRR were observed to occur at frequencies of 2 × 10−2 Hz and lower, and to become quite pronounced below 1 × 10−3 Hz. Spatial effects were observed to be significant only for frequencies above 1 Hz. The agreement of the calculations with the experimental results served to validate the theoretical model.