ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
R. L. French, L. G. Mooney
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 375-380
Technical Note | doi.org/10.13182/NSE72-A22425
Articles are hosted by Taylor and Francis Online.
The “last-collision” method for computing the air-ground interface effect on scattered neutron intensity is extended to give the effect on the intensity within individual polar angle groups at a detector near the ground. The method yields angle-dependent perturbation factors which can be used to adjust infinite-air angle distributions to account for the presence of an air-ground interface, or to adjust angle distributions from one detector height to another. To determine the factors, a uniform scattering distribution in the air about the detector is assumed, and the fractional contribution from each last-collision center in the air is calculated. In addition, the fraction scattered directly to the detector from the ground surface is calculated using a simplified albedo model. An evaluation of the angle-dependent last-collision model indicated that the results of discrete ordinate calculations for infinite air could be modified to give relative polar angle distributions of the scattered neutron dose near the air-ground interface within 10 to 20% of those calculated directly for the air-over-ground case by the discrete ordinate method.