ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Hisashi Hishida, Tamotsu Sekiya
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 319-328
Technical Paper | doi.org/10.13182/NSE72-A22418
Articles are hosted by Taylor and Francis Online.
A heterogeneous method of calculating time-dependent reactor core characteristics, such as the time variation in thermal-neutron flux distribution and the reactivity change during fuel and poison burnup, is derived. The lattice consists of an infinite number of similar square zones closely connected to one another. In each zone, identical fuel rods are arranged in a regular lattice with a burnable poison rod of the same geometric dimensions as a fuel rod at the center. Some numerical examples, utilizing the equations derived finally, give the time variation in poison concentration and k∞(t) for a zone showing the heterogeneity effect associated with a burnable poison rod. Since the machine time required to compute the time variation of such core characteristics through fuel life of 11,000 EFPH as shown in the examples is <25 sec on the IBM 360/75 per case, the method may be applied to the preliminary survey calculation for the time-dependent heterogeneous core characteristics of a square lattice including burnable poison rods as well as to more general time-dependent problems related to such lattices.