ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
John T. Mihalczo
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 290-301
Technical Paper | doi.org/10.13182/NSE72-A22415
Articles are hosted by Taylor and Francis Online.
A series of dynamic measurements has been performed with a multiplying assembly in which a rotating beryllium reflector (worth 4.8 dollars in reactivity) moved past an unreflected core surface ∼60 times/sec at a speed of 264 m/sec. A pulse of 14.1-MeV neutrons was injected into the assembly each time the rotating reflector attained a position for which the reactivity of the assembly was maximum. The time distribution of neutrons after the injection of the pulse was measured in the core and adjacent to a 10.16- × 10.16- × 3.81-cm polyethylene scatterer which provided a pulse of thermal leakage neutrons. The maximum prompt-neutron multiplication of the assembly, which was reflected with iron on all sides but one and contained 58.6 kg of highly enriched uranium metal at delayed criticality, was varied from 75 to 285 by fuel loading changes. This assembly with a maximum prompt-neutron multiplication of 285 produced fast-neutron pulses with a width at half-maximum of 3.9 μsec, with a peak-to-minimum ratio of 12,400 and with 80% of the power in the pulse. These pulses, when thermalized by the scatterer, were broadened to a width at half-maximum of 20.9 μsec with a peak-to-minimum power ratio of 1590. The number of thermal neutrons leaking from the outer surface of the scatterer was 3.3 × 10−5 n/(cm2 fission).