ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
D. Saphier
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 275-289
Technical Paper | doi.org/10.13182/NSE72-A22414
Articles are hosted by Taylor and Francis Online.
A new hybrid method was developed for the solution of the one-dimensional time-dependent diffusion equation in four energy and four delayed-neutron groups. Using this method it is possible to reduce the cost per problem solved by an order of magnitude compared with commonly used digital methods. The solution is based on discretizing the multigroup diffusion equation with respect to the spatial variable while leaving the time variable continuous. The simple coupled time-dependent differential equations so obtained are integrated continuously and in parallel for each of the reactor regions. The regional boundary values are updated from iteration to iteration until convergence is obtained. Two examples are presented in which the hybrid and digital solutions are compared for a fast plutonium oxide fueled reactor. The agreement between the hybrid and digital solution is fairly good.