ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Bradley L. Wescott, Rizwan-uddin
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 293-305
Technical Paper | doi.org/10.13182/NSE01-A2239
Articles are hosted by Taylor and Francis Online.
An alternate formulation of the recently proposed modified nodal integral method (MNIM) has been developed to further reduce computation time when solving nonlinear partial differential equations with a nonlinear convection term such as Burgers' equation and the Navier-Stokes equation. In this formulation, by adding and subtracting a linearized convection term, in which the node-averaged velocity at the previous time step multiplies the spatial derivative, the node-interior approximate analytical solution is developed in terms of this previous time-step node-averaged velocity. This leads to a set of discrete equations with coefficients that need to be evaluated only once each time step for each node, resulting in a significant reduction in computing time when compared with the original MNIM formulation. A numerical scheme using the node-averaged velocities at the previous time step - to be referred to as M2NIM - for the two-dimensional, time-dependent Burgers' equation has been developed. The method is shown to be second order and to posses inherent upwinding. When compared with MNIM, numerical results show a significant reduction in the computation time without sacrificing accuracy.