ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Bradley L. Wescott, Rizwan-uddin
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 293-305
Technical Paper | doi.org/10.13182/NSE01-A2239
Articles are hosted by Taylor and Francis Online.
An alternate formulation of the recently proposed modified nodal integral method (MNIM) has been developed to further reduce computation time when solving nonlinear partial differential equations with a nonlinear convection term such as Burgers' equation and the Navier-Stokes equation. In this formulation, by adding and subtracting a linearized convection term, in which the node-averaged velocity at the previous time step multiplies the spatial derivative, the node-interior approximate analytical solution is developed in terms of this previous time-step node-averaged velocity. This leads to a set of discrete equations with coefficients that need to be evaluated only once each time step for each node, resulting in a significant reduction in computing time when compared with the original MNIM formulation. A numerical scheme using the node-averaged velocities at the previous time step - to be referred to as M2NIM - for the two-dimensional, time-dependent Burgers' equation has been developed. The method is shown to be second order and to posses inherent upwinding. When compared with MNIM, numerical results show a significant reduction in the computation time without sacrificing accuracy.