ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
F. V. Orestano, F. Pistella
Nuclear Science and Engineering | Volume 46 | Number 3 | December 1971 | Pages 376-384
Technical Paper | doi.org/10.13182/NSE71-A22374
Articles are hosted by Taylor and Francis Online.
The investigation of the neutron spectral effects in actual cell geometry in a plutonium-fueled lattice is the final step of a program undertaken at LFCR of CNEN on the investigation of the physics problems for the plutonium recycle in light water reactors. Spectral indices have been measured by foil activation techniques, in the fuel pins and in the moderator, both in a uniform lattice and in the presence of a cross-shaped water gap; the presence of the water gap reduces the value of the index 239Pu-fission/235U fission by about 8%. The measured values have been compared with the results of the design calculational methods as well as those of a more detailed method and agreement is good. In particular, it has been found that the use of two thermal-energy groups (in a five-group scheme) is necessary to describe properly the effect of water gaps on the plutonium effective cross sections. The 239Pu absorption rate has been evaluated from the measured spectral indices by applying a previously tested correlation method; the presence of the water gap also reduces the 239Pu absorption/235 U-fission-ratio by about 10%.