ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Katsuhei Kobayashi, Shuji Yamamoto, Samyol Lee, Hyun-Je Cho, Hajimu Yamana, Hirotake Moriyama, Yoshiaki Fujita, Toshiaki Mitsugashira
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 273-281
Technical Paper | doi.org/10.13182/NSE01-A2237
Articles are hosted by Taylor and Francis Online.
Use is made of a back-to-back type of double fission chamber and an electron linear accelerator-driven lead slowing-down spectrometer to measure the neutron-induced fission cross sections of 229Th and 231Pa below 10 keV relative to that of 235U. A measurement relative to the 10B(n, ) reaction is also made using a BF3 counter at energies below 1 keV and normalized to the absolute value obtained by using the cross section of the 235U(n,f) reaction between 200 eV and 1 keV.The experimental data of the 229Th(n,f) reaction, which was measured by Konakhovich et al., show higher cross-section values, especially at energies of 0.1 to 0.4 eV. The data by Gokhberg et al. seem to be lower than the current measurement above 6 keV. Although the evaluated data in JENDL-3.2 are in general agreement with the measurement, the evaluation is higher from 0.25 to 5 eV and lower above 10 eV. The ENDF/B-VI data evaluated above 10 eV are also lower. The current thermal neutron-induced fission cross section at 0.0253 eV is 32.4 ± 10.7 b, which is in good agreement with results of Gindler et al., Mughabghab, and JENDL-3.2.The mean value of the 231Pa(n,f) cross sections between 0.37 and 0.52 eV, which were measured by Leonard and Odegaarden, is close to the current measurement. The evaluated data in ENDF/B-VI are lower below 0.15 eV and higher above ~30 eV. The ENDF/B-VI and the JEF-2.2 are extremely higher above 1 keV. The JENDL-3.2 data are in general agreement with the measurement, although they are lower above ~100 eV.