ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
S. D. Bloom, J. M. Green, H. W. Hubbard, S. A. Moszkowski
Nuclear Science and Engineering | Volume 46 | Number 2 | November 1971 | Pages 255-265
Technical Paper | doi.org/10.13182/NSE71-A22359
Articles are hosted by Taylor and Francis Online.
Calculations are presented of total cross sections for the following five neutron-induced processes on 56Fe: (n,γ), (n,n’), (n,p), (n,2n), and (n,np), at neutron energies ranging from 10 keV to 18 MeV, depending on the process. The calculations were carried out using the ABACUS-NEARREX code modified by the addition of a subroutine which modeled statistically the final-state level distributions whenever experimental data were lacking. The statistical parameters for the level density formula used in this subroutine were obtained by normalizing to experimental level densities in 56Fe and 56Mn, and to low energy (7 MeV) (n,n’) and (n,p) cross sections. The parameters so derived are in good agreement with those derived from the nuclear shell model. In general, the agreement between the calculations and the experimental cross sections for the five processes enumerated is excellent. It appears clear that the compound statistical model is very good for predicting total reaction rates of this type.