ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. J. Yule, E. F. Bennett
Nuclear Science and Engineering | Volume 46 | Number 2 | November 1971 | Pages 236-243
Technical Paper | doi.org/10.13182/NSE71-A22357
Articles are hosted by Taylor and Francis Online.
Central neutron spectra were measured with proton-recoil proportional counters in a number of uranium- and plutonium-fueled fast reactor assemblies. The energy range of the measurements is from 1 keV to 2 MeV. Short descriptions are included of the experimental technique and of the correction schemes necessary to remove inherent systematic errors in this method of spectroscopy. The measured neutron spectra are compared with homogeneous fundamental- mode calculated spectra. ENDF/B Version I data were used. In general, the agreement between the measured and calculated spectra is good. The comparisons have revealed some systematic discrepancies which are believed to be outside of experimental error near neutron scattering resonances and at low and high energies. These differences are beyond those associated with heterogeneity effects introduced by the plate loadings of the cores.