ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Feroz Ahmed, L. S. Kothari, Ashok Kumar
Nuclear Science and Engineering | Volume 46 | Number 2 | November 1971 | Pages 203-213
Technical Paper | doi.org/10.13182/NSE71-A22354
Articles are hosted by Taylor and Francis Online.
The dependence of neutron diffusion length on the size and shape of the cross-sectional area of infinitely long rectangular blocks of crystalline moderators (graphite and beryllium) has been studied using an energy-dependent transverse buckling. In conformity with the experimental results in graphite, the diffusion length is found to increase with a decrease in the transverse size of the assembly. It is further found that in assemblies with small transverse dimensions, pseudoequilibrium conditions are established fairly rapidly and reasons for this are discussed. On the other hand, in assemblies with intermediate transverse dimensions (cross-sectional area lying between 70 × 70 cm2 and 50 × 50 cm2 for graphite and between 30 × 30 cm2 and 20 × 20 cm2 for beryllium), even pseudo-equilibrium conditions are not established at very large distances from the source. Dependence of the diffusion length on the shape of the cross-sectional area is also investigated.