ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Atsuyuki Suzuki, Ryohei Kiyose
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 112-130
Technical Paper | doi.org/10.13182/NSE71-A22339
Articles are hosted by Taylor and Francis Online.
The fuel management optimization problem within a light water moderated nuclear reactor is formulated as a multistage decision process, and the amount of fresh fuel in each zone and the shuffling schemes of reloading fuel are simultaneously determined so as to minimize the consumption of fresh fuel throughout plant life. The problem in case of a five-zone core involves about 8000 variables and about 2000 constraints on the variables. However, it is shown that the optimal refueling policy can be obtained in a reasonable length of computing time by using linear programming and, prior to the overall optimization calculation, by solving the subproblem of minimizing the stagewise consumption of fresh fuel. The optimal refueling policy results in reduction of the consumption of fresh fuel by about 10% compared with the conventional policy of uniform partial batch refueling. The essential assumption in the calculation model is that the spatial power distribution in the core does not change significantly with time and the optimal allocation of energy output (integrated power output) for each zone can be attained by optimizing the control rod programming for one core life. Three-dimensional depletion calculations are repeatedly performed to verify feasibility of the model based on that assumption.