ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
D. C. Hunt, Robert E. Rothe
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 76-87
Technical Paper | doi.org/10.13182/NSE71-A22337
Articles are hosted by Taylor and Francis Online.
The results of criticality measurements on enriched (93.16% 235U) uranium metal spheres symmetrically immersed in enriched (93.18% 235U) uranyl nitrate solution cylinders are reported. The solution cylinders are 26.5, 38.4, and 51.1 cm in diameter with heights ranging from 16 to 70 cm. Solution concentrations, expressed in grams of uranium per liter, are 11.47, 12.55, 13.12, 21.25, 24.20, 24.72, 103.0, and 104.8. Twenty-seven critical systems are identified. The experimental critical parameters of each system are compared with computed values obtained by transport (DTF) and Monte Carlo (KENO) methods. Results from neither, method exhibit a systematic difference from experimental values; the average difference in the critical radius is 2.5% for DTF and 2.0% for KENO. The effects of experimental perturbations are determined experimentally and calculationally.