ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
D. C. Hunt, Robert E. Rothe
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 76-87
Technical Paper | doi.org/10.13182/NSE71-A22337
Articles are hosted by Taylor and Francis Online.
The results of criticality measurements on enriched (93.16% 235U) uranium metal spheres symmetrically immersed in enriched (93.18% 235U) uranyl nitrate solution cylinders are reported. The solution cylinders are 26.5, 38.4, and 51.1 cm in diameter with heights ranging from 16 to 70 cm. Solution concentrations, expressed in grams of uranium per liter, are 11.47, 12.55, 13.12, 21.25, 24.20, 24.72, 103.0, and 104.8. Twenty-seven critical systems are identified. The experimental critical parameters of each system are compared with computed values obtained by transport (DTF) and Monte Carlo (KENO) methods. Results from neither, method exhibit a systematic difference from experimental values; the average difference in the critical radius is 2.5% for DTF and 2.0% for KENO. The effects of experimental perturbations are determined experimentally and calculationally.