ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
T. Auerbach
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 61-75
Technical Paper | doi.org/10.13182/NSE71-A22336
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to determine the multigroup neutron flux in cells of finite, regular, unreflected, square lattices. The dependence on buckling and on cell squareness is shown explicitly for the moderator spectrum only. The corresponding fuel spectrum at each lattice site may be obtained readily from the condition of flux continuity. Heterogeneous theory of the source-sink type forms the starting point of the present theory. It is shown that each integration constant appearing in the heterogeneous solution for a finite periodic lattice separates into a product of two constants, one of which is a purely geometrical factor of position xi,yi of the i’th element, while the other is a purely physical constant depending on the physical characteristics of the lattice alone. Knowledge of the position dependence allows the flux in a square cell of a finite system to be determined for all multipole orders by means of summation techniques. The physical constants are obtained from multipole moderator-to-fuel boundary conditions. These conditions are expressed in terms of response coefficients and result in a set of equations from which the position dependence is again eliminated by means of summation techniques. The result is a set of simultaneous equations for the physical constants alone which can be solved once the criticality condition is satisfied. The number of these equations is independent of the number of elements in the lattice and equals twice the number of multipoles times the number of energy groups.