ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
E. Linn Draper, Jr.
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 31-41
Technical Paper | doi.org/10.13182/NSE71-A22333
Articles are hosted by Taylor and Francis Online.
Integral fission rates were measured for 232Th, 233U, 235U, 236U, 238U, 237Np, 239Pu, 248Pu, 241Pu, 241Am, 232mAm, and 243Am in four tailored epicadmium neutron spectra. The fission rates were determined by counting fission fragment tracks in solid-state track recorders. The measured and calculated fission rates differed by <7% for 232Th, 233U, 238U, 236U, and 237Np in each spectrum. There is evidence that the 232Th, 238U, and 237Np differential data need slight normalization corrections. Plutonium-239, 240Pu, 241 Pu, 241 Am, 242mAm, and 243Am each exhibited larger deviations of measured from calculated activities than the lighter nuclides. The magnitude of the deviations varied from one spectrum to another for some materials, indicating the possibility of not only magnitude but also shape uncertain-ties for the differential cross sections.