ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Arsalan Razani, H. E. Hungerford
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 1-11
Technical Paper | doi.org/10.13182/NSE71-A22330
Articles are hosted by Taylor and Francis Online.
This paper examines a new probabilistic formulation and development of a model for the investigation of three-dimensional gamma-ray transport problems. This model assumes that gamma-ray motion may be sampled at predetermined points. A medium is considered to be filled with a cubic lattice whose unit distance between lattice points may be some fraction of the mean-free-path. The random walk of gamma rays from one point to another is constructed using the lattice framework as reference points. Using this model, a new type of stochastic gamma-ray transport code, PUGT I (Purdue University Gamma Ray Transport I), has been developed based on direct simulation of physical transport process. In another version of the code (PUGT II), capture of gamma rays is taken into account analytically by associating a weight factor to the gamma rays. The codes are used to calculate the transmission and reflection characteristics of gamma rays for different thicknesses of slabs of aluminum and iron. The contribution of annihilation radiation to reflection and transmission is investigated. The results of our calculations are in good agreement with other similar calculations and with experimental results. Gamma-ray streaming through two-legged rectangular concrete ducts was investigated. Results of these studies are in very good agreement with experimental results and demonstrate the ability of the codes and the power of the lattice model to calculate quickly and efficiently the transmission of gamma rays in three-dimensional complex shielding geometries. The method is several times faster than ordinary Monte Carlo.