ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
W. K. Hagan, B. L. Colborn, T. W. Armstrong, M. Allen
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 272-278
Technical Note | doi.org/10.13182/NSE88-A22328
Articles are hosted by Taylor and Francis Online.
Neutron shielding calculations for a 70- to 250-MeV proton cancer therapy facility have been carried out using the High Energy Transport Code and the one-dimensional discrete ordinates code ANISN. Calculations were performed for iron and water targets with incident proton energies of 150, 200, and 250 MeV. The angular dependence of the neutron spectrum was taken into account by averaging and reporting the spectrum in angular bins of 0 to 15, 15 to 30, 30 to 45, 45 to 60, 60 to 90, and 90 to 180 deg relative to the forward direction of the protons. Each of these various spectra was used as the source spectrum for an individual ANISN run in which the source was placed at the center of a sphere of typical concrete (i.e., density of 2.3 g/cm3) and the dose equivalent per proton was calculated as a function of radius. These calculations differ from previous work primarily in the method used to calculate the neutron spectrum due to the interaction of the protons with the target and the transport cross sections used in the ANISN calculations.