ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
W. K. Hagan, B. L. Colborn, T. W. Armstrong, M. Allen
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 272-278
Technical Note | doi.org/10.13182/NSE88-A22328
Articles are hosted by Taylor and Francis Online.
Neutron shielding calculations for a 70- to 250-MeV proton cancer therapy facility have been carried out using the High Energy Transport Code and the one-dimensional discrete ordinates code ANISN. Calculations were performed for iron and water targets with incident proton energies of 150, 200, and 250 MeV. The angular dependence of the neutron spectrum was taken into account by averaging and reporting the spectrum in angular bins of 0 to 15, 15 to 30, 30 to 45, 45 to 60, 60 to 90, and 90 to 180 deg relative to the forward direction of the protons. Each of these various spectra was used as the source spectrum for an individual ANISN run in which the source was placed at the center of a sphere of typical concrete (i.e., density of 2.3 g/cm3) and the dose equivalent per proton was calculated as a function of radius. These calculations differ from previous work primarily in the method used to calculate the neutron spectrum due to the interaction of the protons with the target and the transport cross sections used in the ANISN calculations.