ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. L. Kloosterman, V. V. Golovko, H. van Dam, T. H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 139 | Number 2 | October 2001 | Pages 118-137
Technical Paper | doi.org/10.13182/NSE01-A2227
Articles are hosted by Taylor and Francis Online.
A new type of nuclear reactor is presented that consists of a graphite-walled tube partly filled with TRISO-coated fuel particles. Helium is used as a coolant that flows from bottom to top through the tube, thereby fluidizing the particle bed. Only when the coolant flow is large enough does the reactor become critical because of the surrounding graphite that moderates and reflects the neutrons.The fuel particle designed for this reactor is strongly undermoderated and has a temperature coefficient of reactivity that is sufficiently negative. The outer diameter is 1 mm with a fuel kernel diameter of 0.26 mm. The fuel enrichment (16.7%) and the core inventory (120 kg of uranium) inherently limit the maximum power to 16 MW(thermal).A lumped-temperature point-kinetics model has been made that describes the fluidization of the particle bed, coupled to the thermal hydraulics and the neutronics of the core. The model has been linearized around the stationary solution, and the transfer function from coolant mass flow rate perturbations to reactor power fluctuations has been calculated. From a root-locus analysis, the reactor operation is shown to be stable with respect to small variations of the coolant mass flow rate around the stationary operation points.Transient analyses with the nonlinear reactor model show that for the three transients considered (a step in the coolant mass flow rate, a decrease of the coolant inlet temperature, and a loss of heat sink), the fuel temperature remains well below 1600°C. Recommendations are made for further research.