ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Yoshiro Asahi, Keisuke Okumura, Yasuo Ose
Nuclear Science and Engineering | Volume 139 | Number 1 | September 2001 | Pages 78-95
Technical Paper | doi.org/10.13182/NSE01-A2223
Articles are hosted by Taylor and Francis Online.
The rate equation for neutronic population is derived from the transient neutron diffusion equation. Neutronic imbalance is defined as the difference between the solution of the rate equation and the neutronic population obtained by spatial kinetics. If the transient neutron diffusion equation in the fully implicit formulation is discretized in such a manner as to satisfy the Gauss theorem and to retain a conservation form, neutronic imbalance decreases as the convergence criteria become strict. The iterative implicit method for neutronics and thermal hydraulics requires continuity of all the variables involved, which, in turn, facilitates the automatic time-step width control. From the viewpoints not only of well-posedness of a transient problem but also of code verification, a transient code should be capable of a null transient analysis for stable systems. Sample calculations are performed for a pressurized water reactor main-steam-line-break accident. An overall thermal-hydraulic trend model is conjectured to help compare and explain the calculated results. Spatial kinetics is found to clearly influence even the temporal behaviors of the secondary system.