ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
A. Yu. Konobeyev, Yu. A. Korovin, P. E. Pereslavtsev, Ulrich Fischer, Ulrich von Möllendorff
Nuclear Science and Engineering | Volume 139 | Number 1 | September 2001 | Pages 1-23
Technical Paper | doi.org/10.13182/NSE00-31
Articles are hosted by Taylor and Francis Online.
For the generation of evaluated nuclear data sets required for the International Fusion Materials Irradiation Facility project, the basic features of the deuteron-lithium and neutron-lithium nuclear interactions are examined. Factors complicating the evaluation of deuteron-lithium reaction characteristics and weak points of previous calculations and evaluations are discussed. A new method to obtain double differential cross sections of particles emitted in d+Li reactions is described. The method is based on the diffraction approach, a modified intranuclear cascade model, and the usual evaluation techniques. The cross sections predicted by this method are in good agreement with existing experimental data for deuteron interactions in thick lithium targets. The study of neutron-lithium interactions is performed on the basis of different approaches: coupled channels, diffraction scattering, and direct breakup models.