ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
M. L. Williams, B. L. Broadhead, C. V. Parks
Nuclear Science and Engineering | Volume 138 | Number 2 | June 2001 | Pages 177-191
Technical Paper | doi.org/10.13182/NSE00-56
Articles are hosted by Taylor and Francis Online.
A method is presented to compute sensitivity coefficients for the eigenvalue of a critical assembly, including implicit effects associated with changes in resonance-shielded multigroup cross sections. Two alternative approaches, based on a forward and an adjoint solution, respectively, are developed to determine the effect of perturbations on the weight function used in group averaging of resonance cross sections. The forward method uses an automated methodology to compute the flux derivative with respect to various cross-section processing parameters. The adjoint method introduces adjoint equations for a multigroup cross-section functional and presents adjoint slowing-down equations for two common methods of resonance self-shielding. Expressions are presented for sensitivity coefficients of self-shielded group cross sections. These sensitivity coefficients are combined with conventional eigenvalue sensitivity coefficients to obtain a general perturbation expression for the multiplication factor. An example application determines the sensitivity of the critical eigenvalue to hydrogen density changes in a homogeneous sphere containing low-enriched uranium. It is shown that changes in 238U-shielded cross sections caused by perturbations in hydrogen concentrations are important components in the overall eigenvalue sensitivity coefficient, which is predicted well by the developed method.