ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Suetsugu Jagawa, Takashi Yoshii, Akihiro Fukao
Nuclear Science and Engineering | Volume 138 | Number 1 | May 2001 | Pages 67-77
Technical Paper | doi.org/10.13182/NSE00-44
Articles are hosted by Taylor and Francis Online.
An automated system for designing a loading pattern (LP) for boiling water reactors (BWRs) given a reference LP and control rod (CR) sequence has been developed. This system employs the advanced nodal code SIMULATE-3 and a BWR LP optimization code FINELOAD-3, which uses a simple linear perturbation method and a modified Tabu search method to select potential optimized LP candidates. Both of these unique methods of FINELOAD-3 were developed to achieve an effective BWR LP optimization strategy and to have high computational efficiency. FINELOAD-3 also adjusts deep CR positions to compensate for the core reactivity deviation caused by fuel shuffling. The objective function is to maximize the end-of-cycle core reactivity while satisfying the specified thermal margins and cold shutdown margin constraints. This optimization system realized the practical application for real BWR LP design. Computer time needed to obtain an optimized LP for a typical BWR/5 octant core with 15 depletion steps is ~4 h using an engineering workstation. This system was extensively tested for real BWR reload core designs and showed that the developed LPs using this system are equivalent or better than the manually optimized LPs.