ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
E. P. E. Michael, J. Dorning, Rizwan-Uddin
Nuclear Science and Engineering | Volume 137 | Number 3 | March 2001 | Pages 380-399
Technical Paper | doi.org/10.13182/NSE137-380
Articles are hosted by Taylor and Francis Online.
The computational efficiencies of two nodal integral methods for the numerical solution of linear convection-diffusion equations are studied. Although the first, which leads to a second-order spatial truncation error, has been reported earlier, it is reviewed in order to lead logically to the development here of the second, which has a third-order error. This third-order nodal integral method is developed by introducing an upwind approximation for the linear terms in the "pseudo-sources" that appear in the transverse-averaged equations introduced in the formulation of nodal integral methods. This upwind approximation obviates the need to develop and solve additional equations for the transverse-averaged first moments of the unknown, as would have to be done in a more straightforwardly developed higher-order nodal integral method. The computational efficiencies of the second-order nodal method and the third-order nodal method - of which there are two versions: one, a full third-order method and the other, which uses simpler second-order equations near the boundaries - are compared with those of both a very traditional method and a recently developed state-of-the-art method. Based on the comparisons reported here for a challenging recirculating flow benchmark problem it appears that, among the five methods studied, the second-order nodal integral method has the highest computational efficiency (the lowest CPU computing times for the same accuracy requirements) in the practical 1% error regime.