ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Marvin L. Adams
Nuclear Science and Engineering | Volume 137 | Number 3 | March 2001 | Pages 298-333
Technical Paper | doi.org/10.13182/NSE00-41
Articles are hosted by Taylor and Francis Online.
The performance of discontinuous finite element methods (DFEMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis is quite general; it holds for an entire family of DFEMs in slab, XY, and XYZ geometries on arbitrarily connected polygonal or polyhedral spatial grids. The main contribution of the work is a theory that predicts and explains how DFEMs behave when applied to thick diffusive regions. It is well known that in the interior of such a region, the exact transport solution satisfies (to leading order) a diffusion equation, with boundary conditions that are known. Thus, in the interiors of such regions, the ideal discretized transport solution would satisfy (to leading order) an accurate discretization of the same diffusion equation and boundary conditions. The theory predicts that one class of DFEMs, which we call "zero-resolution" methods, fails dramatically in thick diffusive regions, yielding solutions that are completely meaningless. Another class - full-resolution methods - has leading-order solutions that satisfy discretizations of the correct diffusion equation. Full-resolution DFEMs are classified according to several categories of performance: continuity, robustness, accuracy, and boundary condition. Certain kinds of lumping, some of which are believed to be new, improve DFEM behavior in the continuity, robustness, and boundary-condition categories. Theoretical results are illustrated using different variations of linear and bilinear DFEMs on several test problems in XY geometry. In every case, numerical results agree precisely with the predictions of the asymptotic theory.