ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Marvin L. Adams
Nuclear Science and Engineering | Volume 137 | Number 3 | March 2001 | Pages 298-333
Technical Paper | doi.org/10.13182/NSE00-41
Articles are hosted by Taylor and Francis Online.
The performance of discontinuous finite element methods (DFEMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis is quite general; it holds for an entire family of DFEMs in slab, XY, and XYZ geometries on arbitrarily connected polygonal or polyhedral spatial grids. The main contribution of the work is a theory that predicts and explains how DFEMs behave when applied to thick diffusive regions. It is well known that in the interior of such a region, the exact transport solution satisfies (to leading order) a diffusion equation, with boundary conditions that are known. Thus, in the interiors of such regions, the ideal discretized transport solution would satisfy (to leading order) an accurate discretization of the same diffusion equation and boundary conditions. The theory predicts that one class of DFEMs, which we call "zero-resolution" methods, fails dramatically in thick diffusive regions, yielding solutions that are completely meaningless. Another class - full-resolution methods - has leading-order solutions that satisfy discretizations of the correct diffusion equation. Full-resolution DFEMs are classified according to several categories of performance: continuity, robustness, accuracy, and boundary condition. Certain kinds of lumping, some of which are believed to be new, improve DFEM behavior in the continuity, robustness, and boundary-condition categories. Theoretical results are illustrated using different variations of linear and bilinear DFEMs on several test problems in XY geometry. In every case, numerical results agree precisely with the predictions of the asymptotic theory.