ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Harjula, J. Lehto, A. Paajanen, L. Brodkin, E. Tusa
Nuclear Science and Engineering | Volume 137 | Number 2 | February 2001 | Pages 206-214
Technical Paper | doi.org/10.13182/NSE01-A2186
Articles are hosted by Taylor and Francis Online.
A transition metal hexacyanoferrate product CsTreat has been utilized at industrial scale for radioactive cesium separation at several nuclear power plants (NPPs) in several countries. A granular hexacyanoferrate ion exchanger has been used in packed-bed column mode operations for the removal of cesium from a variety of wastewater types. CsTreat beds have successfully purified both high-salt evaporator concentrates and dilute floor drain waters at NPPs in Finland and the United States. Furthermore, medium-active reprocessing solutions, containing high concentrations of sodium nitrate, have been decontaminated by a CsTreat bed at the Japan Atomic Energy Research Institute. These solutions are described as are other industrial applications of this ion exchange material, which, of all the commercial materials, has been shown to be the most selective exchanger for cesium. In addition, some prospective fields of hexacyanoferrate utilization, such as the use of CsTreat powder in a precoat filtration system, are discussed.