ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
K. Wisshak, F. Voss, F. Käppeler
Nuclear Science and Engineering | Volume 137 | Number 2 | February 2001 | Pages 183-193
Technical Paper | doi.org/10.13182/NSE01-A2184
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of 232Th has been measured in the energy range from 5 to 225 keV at the Karlsruhe 3.7-MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced via the 7Li(p,n)7Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4 barium fluoride detector. The main difficulty in this experiment is the detection of true capture events characterized by a comparably low binding energy of 4.78 MeV in the presence of the high-energy gamma background (up to 3.96 MeV) associated with the decay chain of the natural thorium sample. With the high efficiency and the good energy resolution of the 4 detector, the sum energy peak of the capture cascades could be reliably separated from the background over the full range of the neutron spectrum, yielding cross-section uncertainties of ~2% above 20 keV and of 4% at 5 keV. The clear identification of the various background components represents a significant improvement compared to existing data for which sometimes high accuracy was claimed, but which were found to be severely discrepant. A comparison to the evaluated files shows reasonable agreement in the energy range above 15 keV, but also severe discrepancies of up to 40% at lower neutron energies.