ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
K. Wisshak, F. Voss, F. Käppeler
Nuclear Science and Engineering | Volume 137 | Number 2 | February 2001 | Pages 183-193
Technical Paper | doi.org/10.13182/NSE01-A2184
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of 232Th has been measured in the energy range from 5 to 225 keV at the Karlsruhe 3.7-MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced via the 7Li(p,n)7Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4 barium fluoride detector. The main difficulty in this experiment is the detection of true capture events characterized by a comparably low binding energy of 4.78 MeV in the presence of the high-energy gamma background (up to 3.96 MeV) associated with the decay chain of the natural thorium sample. With the high efficiency and the good energy resolution of the 4 detector, the sum energy peak of the capture cascades could be reliably separated from the background over the full range of the neutron spectrum, yielding cross-section uncertainties of ~2% above 20 keV and of 4% at 5 keV. The clear identification of the various background components represents a significant improvement compared to existing data for which sometimes high accuracy was claimed, but which were found to be severely discrepant. A comparison to the evaluated files shows reasonable agreement in the energy range above 15 keV, but also severe discrepancies of up to 40% at lower neutron energies.