ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Fritz H. Fröhner, Olivier Bouland
Nuclear Science and Engineering | Volume 137 | Number 1 | January 2001 | Pages 70-88
Technical Paper | doi.org/10.13182/NSE01-A2176
Articles are hosted by Taylor and Francis Online.
Measured neutron resonance cross sections are usually analyzed and parametrized by fitting theoretical curves to high-resolution point data. Theoretically, the cross sections depend mainly on the "internal" levels inside the fitted energy range but also on the "external" levels outside. Although the external levels are mostly unknown, they must be accounted for. If they are simply omitted, the experimental data cannot be fitted satisfactorily. Especially with elastic scattering and total cross-section data, one gets troublesome edge effects and difficulties with the potential cross section between resonances. Various ad hoc approaches to these problems are still being used, involving replacement of the unknown levels by equidistant ("picket fence") or Monte Carlo-sampled resonance sequences, or replication of the internal level sequence; however, more convenient, better working, and theoretically sound techniques have been available for decades. These analytical techniques are reviewed. They describe the contribution of external levels to the R matrix concisely in terms of average resonance parameters (strength function, effective radius, etc.). A more recent, especially convenient approximation accounts for the edge effects by just one fictitious pair of very broad external resonances. Fitting the thermal region, including accurately known thermal cross sections, is often done by adjusting a number of bound levels by trial and error, although again a simple analytical recipe involving just one bound level has been available for a long time. For illustration, these analytical techniques are applied to the resolved resonance region of 52Cr. The distinction between channel radii and effective radii, crucial in the present context, is emphasized.