ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
A. dos Santos, R. Fuga, R. Jerez, A. Y. Abe, E. A. Filho
Nuclear Science and Engineering | Volume 137 | Number 1 | January 2001 | Pages 52-69
Technical Paper | doi.org/10.13182/NSE01-A2175
Articles are hosted by Taylor and Francis Online.
Two experiments performed at the IPEN/MB-01 reactor are suggested to serve as a benchmark problem to verify mainly the adequacy of the 235U nuclear data for criticality analyses and for the isothermal reactivity coefficient determination of thermal reactors. The experiments are claimed to be well-defined, and they are suitable for a benchmark problem partially due to their small uncertainties and partially due to the lack of any sort of calculated correction factors or any quantity that comes either from the calculational methodologies or from another experiment. The isothermal experiment fulfills a specific need to introduce a reactor response that is sensitive to the 235U cross-section shape below 5 meV. This feature could be accomplished due mainly to the very precise control bank system characteristics of the IPEN/MB-01 reactor. The MCNP-4B calculational analyses reveal that the most recent 235U evaluation (Leal-Derrien-Larson's evaluation) incorporated in ENDF/B-VI release 5 performs well in the theory-experiment result comparisons of the aforementioned experiments. Particularly in the isothermal experiment, ENDF/B-VI release 5 produces results that even considering the deviations inherent to the Monte Carlo method meet the desired accuracy (±1.0 pcm/°C) for the isothermal reactivity coefficient determination in contrast to the JEF-2.2 and JENDL-3.2 libraries, which produce unacceptably high keff results. The main reasons are the 235U nuclear data in the case of JEF-2.2 and the nuclear data of both 235U and iron in the case of JENDL-3.2.