ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Marc A. Cooper, Edward W. Larsen
Nuclear Science and Engineering | Volume 137 | Number 1 | January 2001 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE00-34
Articles are hosted by Taylor and Francis Online.
A new method for efficiently solving global Monte Carlo particle transport problems is presented. (In these problems, flux information is desired across the entire system, not just at a small number of detector locations.) The method is based on the use of a weight window that distributes Monte Carlo particles uniformly throughout the system. This (a) ensures that all subregions of the system are adequately sampled and (b) controls the particle weights, even in subregions far from sources. The weight window is constructed from an approximate deterministic solution of the forward transport problem. It is argued that a weight window based on the forward transport solution is more appropriate for global problems than the more familiar concept of basing a weight window on an adjoint solution for source-detector problems. It is also shown that by using Monte Carlo-generated Eddington factors in deterministic solutions of the quasi-diffusion equation, one can inexpensively compute updated forward-based weight windows and obtain a more efficient global Monte Carlo calculation.