ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Roberto D. M. Garcia, Shizuca Ono, Wilson J. Vieira
Nuclear Science and Engineering | Volume 136 | Number 3 | November 2000 | Pages 388-398
Technical Paper | doi.org/10.13182/NSE00-1
Articles are hosted by Taylor and Francis Online.
A prescription for the third basis function relevant to an approximate model of neutral particle transport in ducts is given. When a third basis function is included in the model, the full five-variable differential equation that describes time-independent particle transport in a duct is reduced to a three-group-like transport equation in two variables (one spatial, one angular). Numerical results based on the discrete ordinates method for a series of test cases are compared with results from a suitably modified version of the MCNP code to assess the gain in precision of the model with three basis functions relative to previous versions of the model that make use of only one or two basis functions.