ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
M. A. Shinaishin, M. A. Abolfadl, A. S. Khedr, M. M. Kamel
Nuclear Science and Engineering | Volume 136 | Number 3 | November 2000 | Pages 376-387
Technical Paper | doi.org/10.13182/NSE00-A2166
Articles are hosted by Taylor and Francis Online.
This work aims at simulating steam Zircaloy clad interaction in a wide range of temperatures extending to those expected in severe accident conditions of nuclear power plant light water reactors. The equations governing interaction variables for a two-layer (-oxide) and three-layer (--oxide) structure are analytically solved for a semi-infinite and for a finite metal thickness. This method has great computational advantages (small calculation time with no divergence problem) compared with the numerical solution methods, and it can be accurately applied at high temperatures and for finite metal thickness compared to published parabolic correlations, which yield large deviations from experimental data at these conditions. Variables such as oxidation rates, steam consumption, hydrogen generation, and heat released due to oxidation are very important in identifying reactor core degradation scenarios. We thus focused on predicting them as accurately as possible. The predicted oxidation rates at constant temperatures and under constant heating rates are compared with available experimental data for Zircaloy-4, and good agreements were observed. The results reflect the importance of the oxidation heat generation as a heat source in severe accidents knowing that the reactor core contains large quantities of structural metals.