ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
M. A. Shinaishin, M. A. Abolfadl, A. S. Khedr, M. M. Kamel
Nuclear Science and Engineering | Volume 136 | Number 3 | November 2000 | Pages 376-387
Technical Paper | doi.org/10.13182/NSE00-A2166
Articles are hosted by Taylor and Francis Online.
This work aims at simulating steam Zircaloy clad interaction in a wide range of temperatures extending to those expected in severe accident conditions of nuclear power plant light water reactors. The equations governing interaction variables for a two-layer (-oxide) and three-layer (--oxide) structure are analytically solved for a semi-infinite and for a finite metal thickness. This method has great computational advantages (small calculation time with no divergence problem) compared with the numerical solution methods, and it can be accurately applied at high temperatures and for finite metal thickness compared to published parabolic correlations, which yield large deviations from experimental data at these conditions. Variables such as oxidation rates, steam consumption, hydrogen generation, and heat released due to oxidation are very important in identifying reactor core degradation scenarios. We thus focused on predicting them as accurately as possible. The predicted oxidation rates at constant temperatures and under constant heating rates are compared with available experimental data for Zircaloy-4, and good agreements were observed. The results reflect the importance of the oxidation heat generation as a heat source in severe accidents knowing that the reactor core contains large quantities of structural metals.