ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Tomohiko Iwasaki, Toshimitu Horiuchi, Daisuke Fujiwara, Hironobu Unesaki, Seiji Shiroya, Masatoshi Hayashi, Hiroshi Nakamura, Takanori Kitada, Nobuo Shinohara
Nuclear Science and Engineering | Volume 136 | Number 3 | November 2000 | Pages 321-339
Technical Paper | doi.org/10.13182/NSE00-A2162
Articles are hosted by Taylor and Francis Online.
Capture reaction rate ratios of 237Np relative to 197Au were measured in 11 thermal neutron fields provided by the Kyoto University Critical Assembly and the Kyoto University Reactor Heavy Water Neutron Irradiation Facility. In the measurement, both samples of 237Np and 197Au were irradiated at the same time, and their gamma activities were measured. The typical experimental error was 3.5%. The analysis was performed by three steps: full-core calculation, self-shielding correction of the sample, and perturbation correction of the sample. Three full-core calculations by a continuous-energy Monte Carlo code (MVP), a transport code (TWOTRAN), and a diffusion code (CITATION) were made with the JENDL-3.2 library. The self-shielding factors were derived by an analytical formula, and the perturbation factors were calculated by another MVP calculation. The reaction rates were derived by multiplying the neutron spectrum, the two correction factors, and the capture cross sections of 237Np and 197Au.As a result, the three full-core calculations provided almost the same neutron spectra at the sample position and gave almost the same calculated-to-experimental values (C/Es) for the capture reaction rate ratios of 237Np relative to 197Au. Based on the capture cross section of 237Np taken from the JENDL-3.2 library, the C/Es were between 0.97 and 1.04, and the average C/E among the 11 cores was 1.01. On the other hand, the C/Es using the ENDF/B-VI and the JEF-2.2 were 1.02 to 1.06 for harder spectrum cores, whereas the C/Es for the softer spectrum cores were 1.08 to 1.16. It is concluded that the JENDL-3.2 library has good accuracy for the capture cross section of 237Np but the ENDF/B-VI and the JEF-2.2 libraries overestimate that of 237Np >10% in the thermal neutron energy region.