ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tomohiko Iwasaki, Toshimitu Horiuchi, Daisuke Fujiwara, Hironobu Unesaki, Seiji Shiroya, Masatoshi Hayashi, Hiroshi Nakamura, Takanori Kitada, Nobuo Shinohara
Nuclear Science and Engineering | Volume 136 | Number 3 | November 2000 | Pages 321-339
Technical Paper | doi.org/10.13182/NSE00-A2162
Articles are hosted by Taylor and Francis Online.
Capture reaction rate ratios of 237Np relative to 197Au were measured in 11 thermal neutron fields provided by the Kyoto University Critical Assembly and the Kyoto University Reactor Heavy Water Neutron Irradiation Facility. In the measurement, both samples of 237Np and 197Au were irradiated at the same time, and their gamma activities were measured. The typical experimental error was 3.5%. The analysis was performed by three steps: full-core calculation, self-shielding correction of the sample, and perturbation correction of the sample. Three full-core calculations by a continuous-energy Monte Carlo code (MVP), a transport code (TWOTRAN), and a diffusion code (CITATION) were made with the JENDL-3.2 library. The self-shielding factors were derived by an analytical formula, and the perturbation factors were calculated by another MVP calculation. The reaction rates were derived by multiplying the neutron spectrum, the two correction factors, and the capture cross sections of 237Np and 197Au.As a result, the three full-core calculations provided almost the same neutron spectra at the sample position and gave almost the same calculated-to-experimental values (C/Es) for the capture reaction rate ratios of 237Np relative to 197Au. Based on the capture cross section of 237Np taken from the JENDL-3.2 library, the C/Es were between 0.97 and 1.04, and the average C/E among the 11 cores was 1.01. On the other hand, the C/Es using the ENDF/B-VI and the JEF-2.2 were 1.02 to 1.06 for harder spectrum cores, whereas the C/Es for the softer spectrum cores were 1.08 to 1.16. It is concluded that the JENDL-3.2 library has good accuracy for the capture cross section of 237Np but the ENDF/B-VI and the JEF-2.2 libraries overestimate that of 237Np >10% in the thermal neutron energy region.