ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
John F. Carew, Kai Hu, Gabriel Zamonsky
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 282-293
Technical Paper | doi.org/10.13182/NSE99-96
Articles are hosted by Taylor and Francis Online.
Recently, a uniform equal-weight quadrature set, UEn, and a uniform Gauss-weight quadrature set, UGn, have been derived. These quadratures have the advantage over the standard level-symmetric LQn quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UEn quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UGn quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UGn (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UGn solutions have converged to within ~0.25%. The converged UGn solutions are found to be comparable to the UEn results and are more accurate than the level-symmetric S16 predictions.