ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Keisuke Kobayashi, Kenji Nishihara
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 272-281
Technical Paper | doi.org/10.13182/NSE00-A2158
Articles are hosted by Taylor and Francis Online.
Using an importance function describing the capability of a system for producing fission neutrons, a new definition of the subcriticality is proposed, which has the physical meaning of a multiplication factor in a real subcritical system with external sources. This multiplication factor ks, which expresses the number of fission neutrons produced by a fission neutron in a steady state, is different from the usual criticality factor or the effective multiplication factor keff, since the former is calculated from the inhomogeneous equation with external source, whereas the latter is calculated from the homogeneous criticality equation without external source.