ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
TEPCO restarts Kashiwazaki Kariwa Unit 6
Earlier today, TEPCO announced that after nearly 15 years, Unit 6 at the Kashiwazaki Kariwa nuclear power station has been restarted. Following approval from Japan’s Nuclear Regulation Authority (NRA), TEPCO withdrew the reactor’s control rods to initiate startup at 7:02 p.m. local time.
Next, the company will work with the NRA to confirm the safe operation of the plant. “We will carefully verify the integrity of each and every plant facility while suitably addressing any issues that arise and conveying information to the public during each step of the startup process,” TEPCO’s statement said.
Kirk A. Mathews, Rodney L. Miller, Charles R. Brennan
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 178-201
Technical Paper | doi.org/10.13182/NSE00-A2152
Articles are hosted by Taylor and Francis Online.
The linear characteristic (LC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. For each ordinate in a discrete ordinates sweep, each cell is split into subcells along a line parallel to the ordinate. Direct affine transformations among appropriate oblique Cartesian coordinate systems for the faces and interior of each cell and subcell are used to simplify the characteristic transport through each subcell. This approach is straightforward and eliminates computationally expensive trigonometric functions. An efficient and well-conditioned technique for evaluating the required integral moments of exponential functions is presented. Various test problems are used to demonstrate (a) the approach to cubic convergence as the mesh is refined, (b) insensitivity to the details of irregular meshes, and (c) numerical robustness. These tests also show that meshes should represent volumes of regions with curved as well as planar boundaries exactly and that cells should have optical thicknesses throughout the mesh that are more or less equal. A hybrid Monte Carlo/discrete ordinates method, together with MCNP, is used to distinguish between error introduced by the angular and the spatial quadratures. We conclude that the LC method should be a practical and reliable scheme for these meshes, presuming that the cells are not optically too thick.