ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Chao Tian, Lifeng Sun, Chao Fang
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 204-211
Technical Paper | doi.org/10.13182/NSE12-51
Articles are hosted by Taylor and Francis Online.
In this paper, we discuss our study of the fission product diffusion process in TRISO fuel particles used in pebble bed high-temperature reactors (HTRs). Different from the previous numerical solution, the analytical solution of this diffusion process by variables separation was derived. It was also accessible to obtain the analytical expressions of the fission product concentration distribution C(t), the corresponding release fractions F(t), and the ratio of release and productive amounts R(t)/B(t) of fission products. Furthermore, to reduce the rounding errors, parameters mentioned in the diffusion equations were nondimensionalized, which made the result fairly reliable and credible. Since the analytical solutions are exact, many unnecessary assumptions and approximations in Booth's model are avoided. On the basis of HTR-10 design benchmark, the C(t), F(t), and R(t)/B(t) of 137Cs and 134Cs in TRISO fuel particles were calculated and then compared with the finite element solutions. The results show that analytical solutions are effective and consistent with the physical picture.