ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
L. Gilli, D. Lathouwers, J. L. Kloosterman, T. H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 172-187
Technical Paper | doi.org/10.13182/NSE12-92
Articles are hosted by Taylor and Francis Online.
In this paper we present the derivation and the application of an adaptive nonintrusive spectral technique for uncertainty quantification. Spectral techniques can be used to reconstruct stochastic quantities of interest by means of a Fourier-like expansion. Their application to uncertainty propagation problems can be performed in a nonintrusive fashion by evaluating a set of projection integrals that is used to reconstruct the spectral expansion. We present the derivation of a new adaptive quadrature algorithm, based on the definition of a sparse grid, which can be used to evaluate these spectral coefficients. This new adaptive algorithm is applied to a reference uncertainty quantification problem consisting of a coupled time-dependent model. The benefits of using such an adaptive method are analyzed and discussed from the uncertainty propagation and computational points of view.