ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Stacey Eaton, Carl Beard, Kevin Ramsey, John Buksa, Ken Chidester
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 151-177
Technical Paper | doi.org/10.13182/NSE00-A2151
Articles are hosted by Taylor and Francis Online.
Investigations of an advanced fuel form are currently under way. This new fuel form, referred to as evolutionary mixed oxide (EMOX), is a slight perturbation on standard mixed-oxide (MOX) fuel, and analyses show that it can be an effective plutonium management tool in existing light water reactors. The addition of a small fraction of calcia-stabilized zirconia to the uranium-plutonium oxide matrix allows for greater plutonium conversion while also providing a licensing path forward toward eventual implementation of higher-plutonium-destruction fuels. These fuels, referred to as nonfertile (NF) fuels, achieve their high destruction rates through the absence of uranium, which breeds plutonium, in the fuel composition.Extensive calculations have been performed to assess the feasibility of incorporating the EMOX fuel form into existing pressurized water reactor systems, and the results are given in detail. Specifically, calculations have been made to determine the plutonium consumption achievable by the EMOX concept, and comparisons have been made of this performance to that of typical MOX and NF fuels. The results indicate that EMOX and NF fuels can provide flexibility with regard to controlling plutonium inventories in spent fuel. In addition, fabrication experiments have been conducted to determine the feasibility of fabricating suitable EMOX and NF fuels. NF and EMOX fuels have been fabricated using the solid-state reaction method. Precursor powders were successfully blended and milled using a combination of ball milling and high-energy vibratory milling. Sintering data for EMOX fuel indicated that significant densification occurred at a temperature of 1700°C.