ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Hideyuki Hosokawa, Makoto Nagase, Motomasa Fuse, Yutaka Watanabe
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 135-148
Technical Paper | doi.org/10.13182/NSE12-80
Articles are hosted by Taylor and Francis Online.
The formation process of a ferrite oxide film (which can effectively suppress radioactive nuclide deposition on piping surfaces) was evaluated from the viewpoints of forming optimum film structures and reducing waste disposal. Both pH and oxidation-reduction potential (ORP) of ferrite film formation solution were found to be important, and the film formation process could be understood on the basis of a Pourbaix diagram of the iron-water system. To make a thin and closely packed oxide film, the pH and ORP values should be maintained within the magnetite stability domain by controlling the hydrazine concentration, which promotes the film formation reactions. Use of chemical solutions such as formic acid and hydrazine was confirmed to get catalyst decomposition into easily handled substances. This film formation process could be evaluated taking into consideration the charge balance and chemical equilibrium equations of each reaction involved in the film formation. It was clarified that preoxidation of the ferrite film under certain oxidizing water chemistry conditions (such as normal water chemistry) in boiling water reactors could further improve the film cobalt deposition suppression performance due to the formation of hematite. Our selected film forming process and waste solution decomposition conditions were confirmed using the simulated flow system apparatus of one-tenth actual plant scale. The method was applied to the actual plant just after the chemical decontamination. After one cycle elapsed, dose rate of the reactor recirculation system piping coated with ferrite film was half that before the ferrite film was formed.