ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Nobuhiro Yamamuro
Nuclear Science and Engineering | Volume 118 | Number 4 | December 1994 | Pages 249-259
Technical Paper | doi.org/10.13182/NSE94-A21495
Articles are hosted by Taylor and Francis Online.
An estimation of the production of long-lived radionuclides by neutron-induced reactions in potential fusion reactor materials is very important for the development of low-activation materials. Although some measured data of activation cross sections leading to long-lived radioactive nuclides are available, the development of a calculation capability is necessary to provide complete excitation functions of the reactions involved. Calculations are not generally effective when experimental data to determine the parameters used in the model calculation are limited. In the SINCROS-II system, the consistency of the method of calculation is respected, and the parameters used are cross-checked by the available experimental data and the systematic trend of the calculated results. Thus, the SINCROS-II is expected to predict the activation cross sections with good accuracy, even if the cross section is calculated for a radioactive target nucleus. As an example of the cross-section predictions, the activation cross-section calculations are presented up to 20 MeV for neutron-induced production of long-lived radioactive nuclides 60Co, 59Ni, 63Ni, 91Nb, 94Nb, 93Mo, 99Mo, 108mAg, 150mEu, 152Eu, 158Tb, and 186mRe.