ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Ken Nakajima, Masanori Akai, Takenori Suzaki
Nuclear Science and Engineering | Volume 116 | Number 2 | February 1994 | Pages 138-146
Technical Paper | doi.org/10.13182/NSE94-A21489
Articles are hosted by Taylor and Francis Online.
The modified conversion ratio is defined as the ratio of 238U captures to total fission. Gamma-ray spectrometry of irradiated fuel rods has been introduced to measure this quantity in two types of water-moderated low-enriched UO2 cores: the standard core, called the 1.42S core, and a tight-lattice core, called the 0.56S core. The water moderator-to-fuel volume ratios Vm/Vf of the cores are 1.420 and 0.564, respectively. As no activation foil is used in this method, no corrections are needed for the neutron self-shielding and neutron flux depression that are caused by such a foil. Instead, the gamma-ray self-shielding effect due to the fuel rod must be corrected. The modified conversion ratio is measured by this method are 0.457 for the 1.42S core and 0.724 for the 0.56S core. The errors in the experimental results are estimated to be∼3%. Computer analyses using the VIM continuous-energy Monte Carlo code with the JENDL-2 library show that the calculated value is ∼6% larger than the experimental one for the tight-lattice 0.56S core.