ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Haluk Utku, John M. Christenson
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 55-66
Technical Note | doi.org/10.13182/NSE94-A21481
Articles are hosted by Taylor and Francis Online.
The temporal subdomain method (TSM), based on a spatial finite element formulation, is investigated as a method for the solution of the space-time-dependent multigroup neutron dynamics equations. The spatial aspect of the problem was formulated as an array of finite elements by using a two-dimensional rectangular coordinate system subdivided into contiguous triangular elements. Within each element and within each neutron group, the flux was represented by a linear polynomial. Numerical experiments using a computer program developed during the course of the investigation demonstrated that the method is straightforward to implement and that it produces stable calculations for a wide range of time steps. The stability of the method has been tested for sinusoidal, ramp, and step-change reactivity insertions. The results show that the TSM outperforms most alternating direction implicit methods in the sense that a similar degree of accuracy can be achieved with larger time steps using the same number of nodes. System condition number calculations as a function of node number were also carried out for a series of static eigenvalue calculations to determine the likelihood of error propagation and the difficulty of inverting the global system matrices during the time-dependent calculations.